

Transformers

DL4DS – Spring 2024

A Brief History of Transformers

2000

Yoshua Bengio*

2014

Ilya Sutskever*

2014

Dzmitry Bahdanau*

2017

A Team at Google

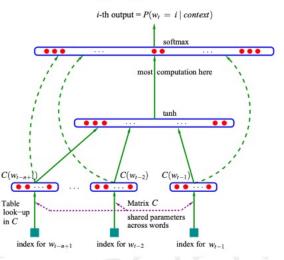
Use LSTMs

Add Attention

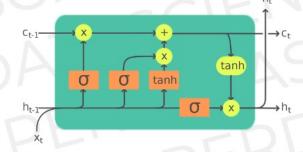
Remove LSTM5

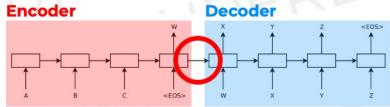
Attention is all you need

A Neural Probabilistic Language Model



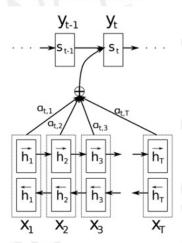
Seq-to-Seq Learning with Neural Networks

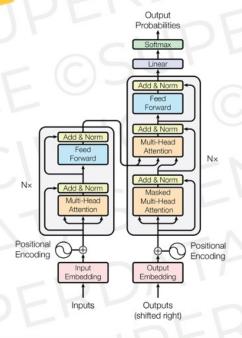




*And others; Chronological analysis inspired by Andrej Karpathy's lecture, youtube.com/watch?v=XfpMkf4rD6E

Neural Machine Translation by Jointly Learning to Align and Translate





A Neural Probabilistic Language Model

Bengio et al, 2000 and 2003

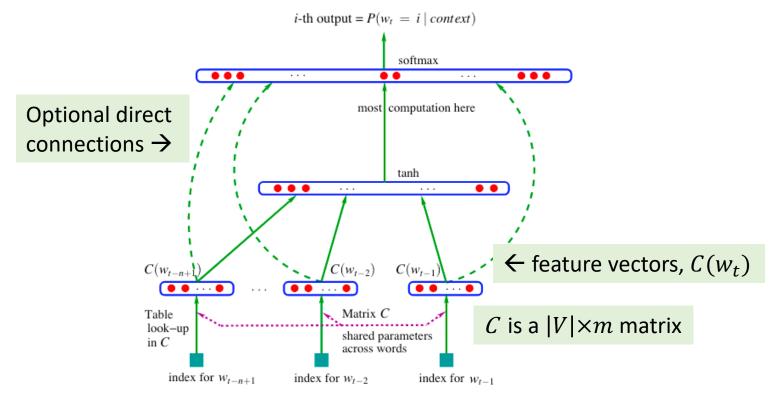


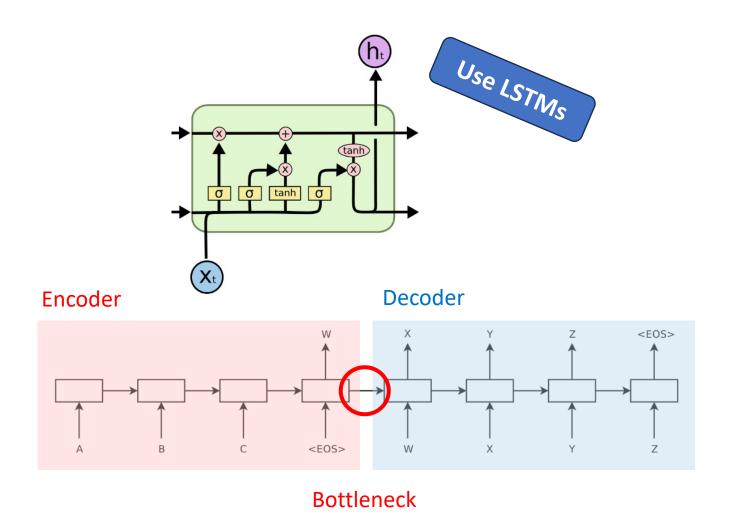
Figure 1: Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

 $w_t \in V$ words in the vocabulary

- Build a probabilistic language model from NNs
- Feed forward network with shared parameters, C, that create embeddings
- Predicts the probability of a word at time t, based on the context of the last n words
- Can use shallow feed forward or recurrent neural networks

Limited to context length of n

Sequence to Sequence Learning with Neural Networks Sutskever et al (2014)

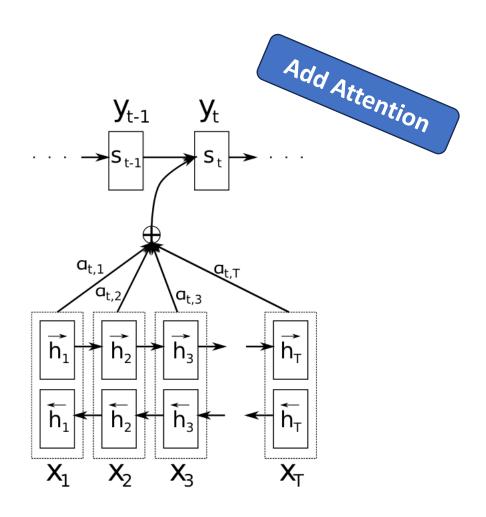


- Used LSTMs in an Encoder/Decoder structure
- Estimate the probability of $p(y_1, ..., y_{T'} | x_1, ..., x_T)$ where $T' \neq T$
- Encoder mapped sequence to a fixed size token (hidden state)
- The hidden state may not encode all the information needed by the decoder

Bottleneck between Encoder and Decoder!

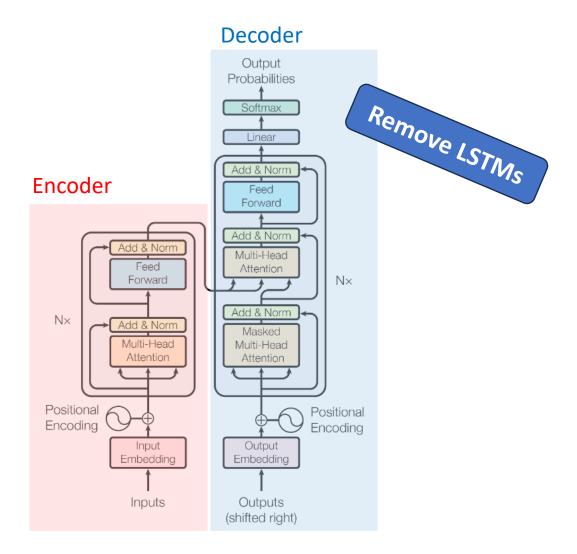
I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to Sequence Learning with Neural Networks," in *Advances in Neural Information Processing Systems*, Curran Associates, Inc., 2014. <u>Link</u>

Neural Machine Translation by Jointly Learning to Align and Translate Bahdanau, Cho & Bengio (2014-15)



- Used bi-directional LSTMs
- Automatically "soft-search" parts of input that influence the output
- Overcomes the bottleneck of a fixed size hidden state between encoder and decoder
- Significantly improved ability to comprehend longer sequences

Attention is All You Need *Vaswani et al (2017)*



- Removed LSTMs and didn't use convolutions
- Only attention mechanisms and MLPs
- Parallelizable by removing sequential hidden state computation
- Outperformed all previous models

Transformers applied to many NLP applications

- Translation
- Question answering
- Summarizing
- Generating new text
- Correcting spelling and grammar
- Finding entities
- Classifying bodies of text
- Changing style etc.

Transformers

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models

Transformers

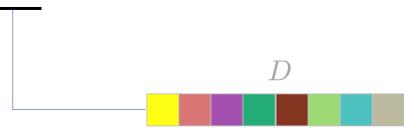
- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambience was just as good as the food and service.

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambience was just as good as the food and service.



Encode word (or word parts) in some kind of D-dimensional embedding vector.

We'll look at tokenization and embedding encoding later.

For now assume a word is a token.

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambience was just as good as the food and service.



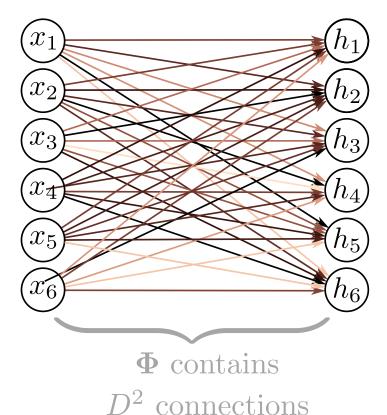
x N

In this example, we have a D-dimensional input vector for each of the 37 words above.

Normally we would represent punctuation, capitalization, spaces, etc. as well.

Standard fully-connected layer

$$\mathbf{h} = \mathbf{a}[\boldsymbol{eta} + \mathbf{\Omega}\mathbf{x}]$$



Assuming D inputs and D hidden units.

Standard fully-connected layer

$$\mathbf{h} = \mathbf{a}[oldsymbol{eta} + \mathbf{\Omega}\mathbf{x}]$$

Problem:

- token (word) vectors may be 512 or 1024 dimensional
- need to process large segment of text
- Hence, would require a very large number of parameters
- Can't cope with text of different lengths

Conclusion:

We need a model where parameters don't increase with input length

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambience was just as good as the food and service.

The word their must "attend to" the word restaurant.

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambience was just as good as the food and service.

The word their must "attend to" the word restaurant.

Conclusions:

- There must be connections between the words.
- The strength of these connections will depend on the words themselves

Need to efficiently process large strings of text

Need to relate words across fairly long context lengths

Self-Attention addresses these problems

Transformers

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models

Dot-Product Self-Attention

1. Shares parameters to cope with long input passages of different lengths

2. Contains connections between word representations that depend on the words themselves

Dot-product self attention

- Takes N inputs of size Dx1 and returns N inputs of size Dx1
- Computes N values (no ReLU)

$$\mathbf{v}_n = \boldsymbol{eta}_v + \mathbf{\Omega}_v \mathbf{x}_n$$

Dot-product self attention

- Takes N inputs of size Dx1 and returns N inputs of size Dx1
- Computes N values (no ReLU)

$$\mathbf{v}_n = oldsymbol{eta}_v + oldsymbol{\Omega}_v \mathbf{x}_n$$

N outputs are weighted sums of these values

$$\mathbf{sa}[\mathbf{x}_n] = \sum_{m=1}^N a[\mathbf{x}_n, \mathbf{x}_m] \mathbf{v}_m$$

Dot-product self attention

- Takes N inputs of size Dx1 and returns N inputs of size Dx1
- Computes N values (no ReLU)

$$\mathbf{v}_n = \boldsymbol{eta}_v + \mathbf{\Omega}_v \mathbf{x}_n$$

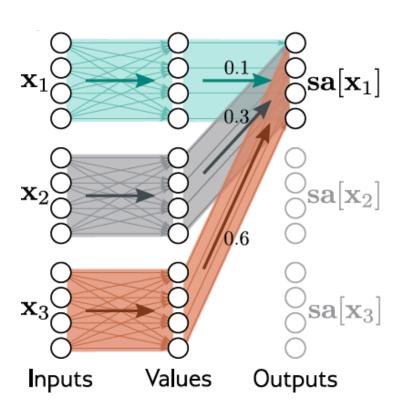
• N outputs are weighted sums of these values

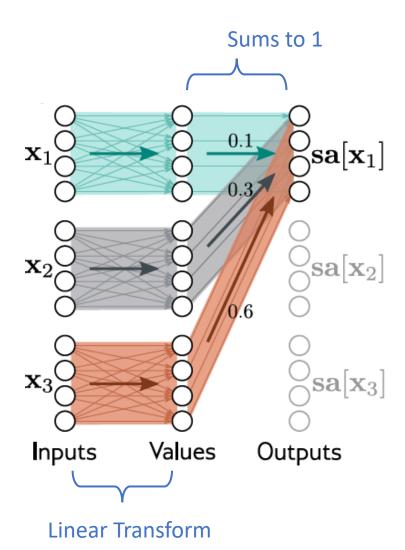
 $\mathbf{sa}_n[\mathbf{x}_1,\ldots,\mathbf{x}_N] = \sum_{m=1}^N a[\mathbf{x}_m,\mathbf{x}_n]\mathbf{v}_m.$

Weights depend on the inputs themselves

Scalar self-attention weights that represent how much attention the n^{th} token should pay to the m^{th} token

 $a[\cdot, \mathbf{x}_n]$ are non-negative and sum to one



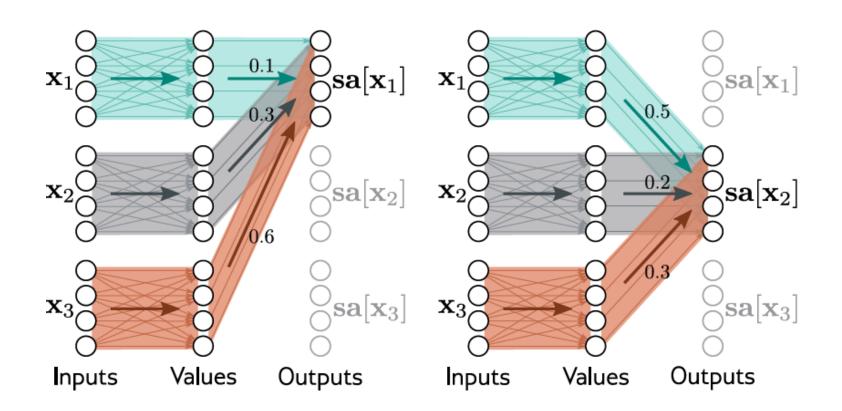


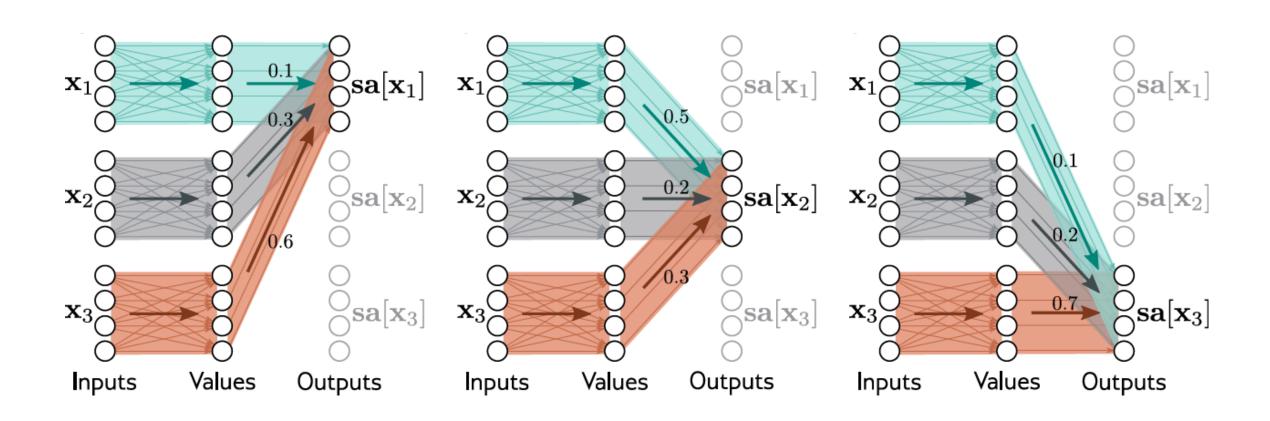
Here:

of inputs, N = 3

Dimension of each input, D = 4

We'll show how to calculate the self-attention weights shortly.





Attention weights

Compute N "queries" and N "keys" from input

$$\mathbf{q}_n = oldsymbol{eta}_q + oldsymbol{\Omega}_q \mathbf{x}_n \ \mathbf{k}_n = oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{x}_n,$$

Calculate similarity and pass through softmax:

$$a[\mathbf{x}_n, \mathbf{x}_m] = \operatorname{softmax}_m \left[\sin[\mathbf{k}_m \mathbf{q}_n] \right]$$
$$= \frac{\exp\left[\sin[\mathbf{k}_m \mathbf{q}_n] \right]}{\sum_{m'=1}^{N} \exp\left[\sin[\mathbf{k}'_m \mathbf{q}_n] \right]},$$

Attention weights

Compute N "queries" and N "keys" from input

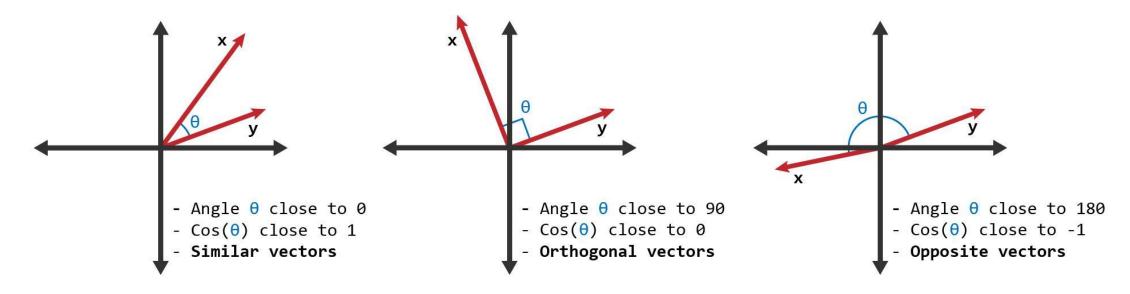
$$\mathbf{q}_n = oldsymbol{eta}_q + oldsymbol{\Omega}_q \mathbf{x}_n \ \mathbf{k}_n = oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{x}_n,$$

Take dot products and pass through softmax:

$$a[\mathbf{x}_n, \mathbf{x}_m] = \operatorname{softmax}_m \left[\mathbf{k}_m^T \mathbf{q}_n \right]$$
$$= \frac{\exp \left[\mathbf{k}_m^T \mathbf{q}_n \right]}{\sum_{m'=1}^N \exp \left[\mathbf{k}_{m'}^T \mathbf{q}_n \right]}$$

Dot product = measure of similarity

$$\mathbf{x}^T\mathbf{y} = |\mathbf{x}||\mathbf{y}|\cos(\theta)$$



A drawback of the dot product as similarity measure is the magnitude of each vector influences the value. More rigorous to divide by magnitudes.

Cosine Similarity:
$$\frac{\mathbf{x}^T \mathbf{y}}{|\mathbf{x}||\mathbf{y}|} = \cos(\theta)$$

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambience was just as good as the food and service.

Conclusions:

✓ We need a model where parameters don't increase with input length, e.g.

$$oldsymbol{\phi} = \{oldsymbol{eta}_v, oldsymbol{\Omega}_v, oldsymbol{eta}_q, oldsymbol{\Omega}_q, oldsymbol{eta}_k, oldsymbol{\Omega}_k\}$$

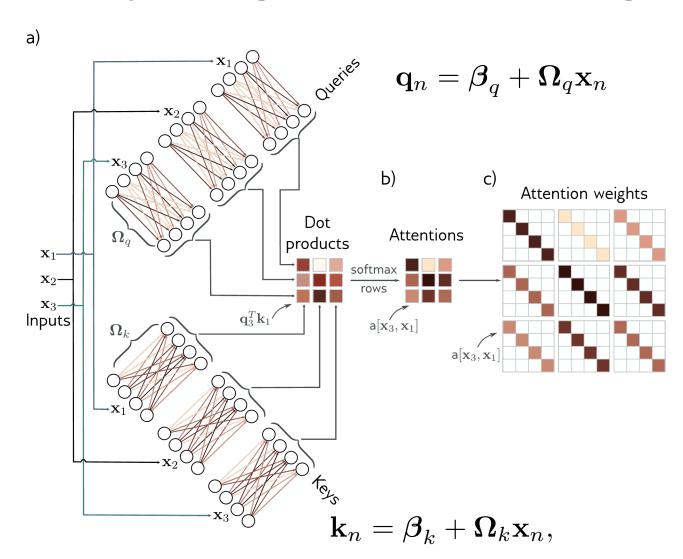
- There must be connections between the words.
- ✓ The strength of these connections will depend on the words themselves.

Ok, we defined *queries*, *keys* and *values*, but how are they used?

Transformers

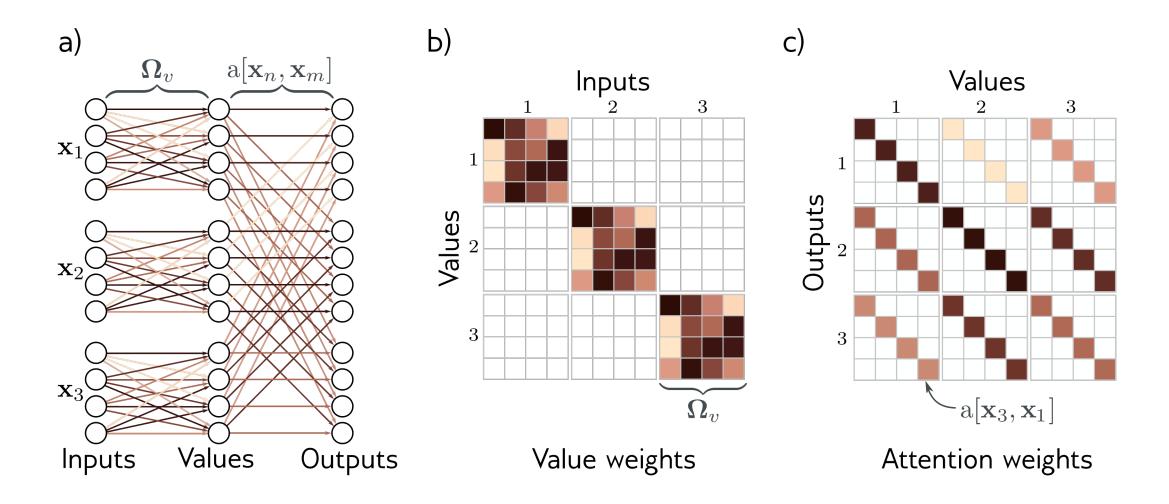
- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models

Computing Attention Weights



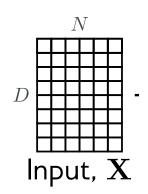
$$a[\mathbf{x}_n, \mathbf{x}_m] = \operatorname{softmax}_m \left[\mathbf{k}_m^T \mathbf{q}_n \right]$$

Computing Values and Self-Attention Outputs as Sparse Matrix Ops



From Input Vector to Input Matrix

Store N input vectors in matrix X



Compute values, queries and keys:

$$egin{aligned} \mathbf{V}[\mathbf{X}] &= oldsymbol{eta}_v \mathbf{1^T} + \mathbf{\Omega_v} \mathbf{X} \ \mathbf{Q}[\mathbf{X}] &= oldsymbol{eta}_q \mathbf{1^T} + \mathbf{\Omega_q} \mathbf{X} \ \mathbf{K}[\mathbf{X}] &= oldsymbol{eta}_k \mathbf{1^T} + \mathbf{\Omega_k} \mathbf{X}, \end{aligned}$$

Combine self-attentions

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V}[\mathbf{X}] \cdot \mathbf{Softmax} \Big[\mathbf{K}[\mathbf{X}]^T \mathbf{Q}[\mathbf{X}] \Big] = \mathbf{V} \cdot \mathbf{Softmax} \big[\mathbf{K}^T \mathbf{Q} \big]$$

Scaled Dot Product Self-Attention

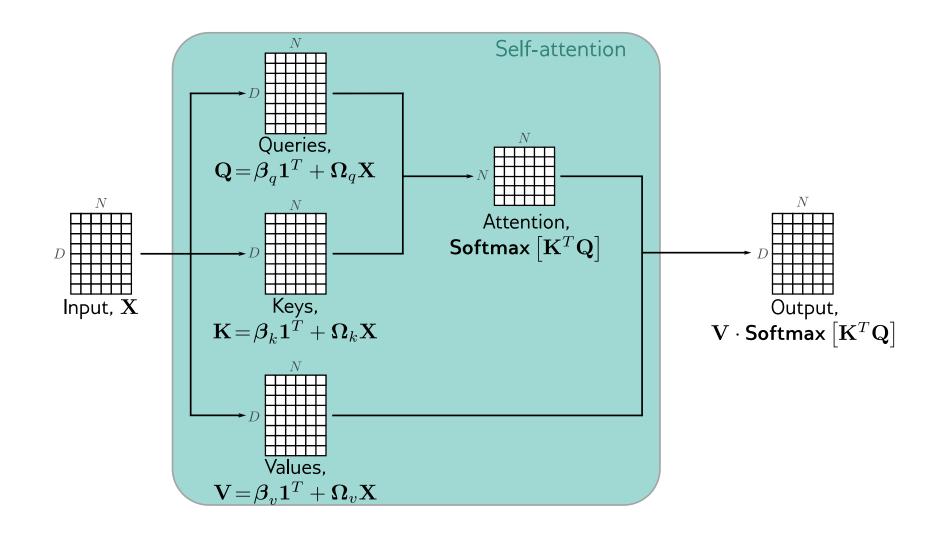
• To avoid the case where a large value dominates the softmax in

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V} \cdot \mathbf{Softmax}[\mathbf{K}^T \mathbf{Q}]$$

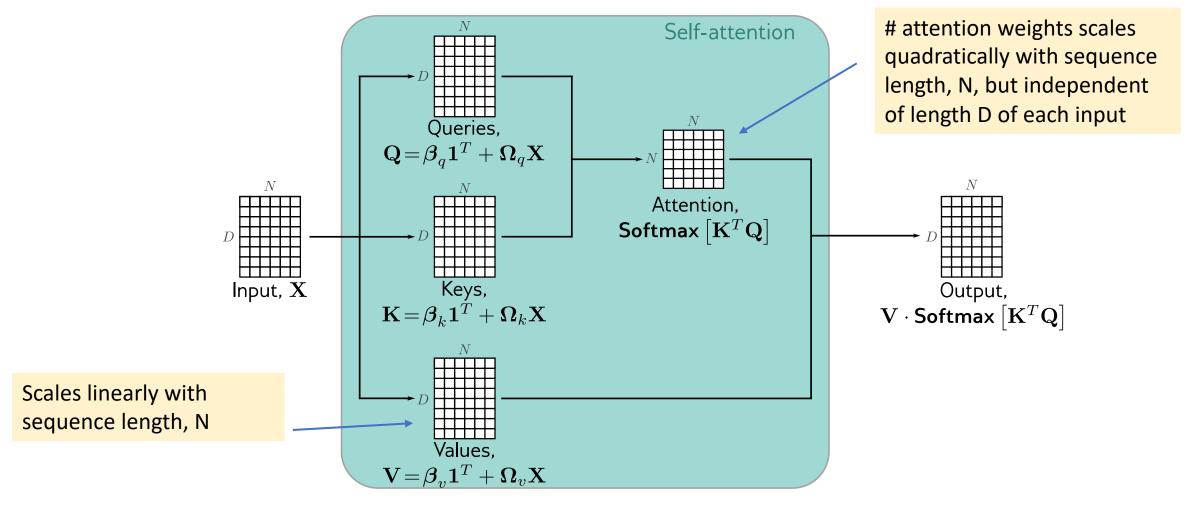
• you can scale the dot product by the square root of the dimension of the query $\begin{bmatrix} T & T & C \end{bmatrix}$

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V} \cdot \mathbf{Softmax} \left[\frac{\mathbf{K}^T \mathbf{Q}}{\sqrt{D_q}} \right]$$

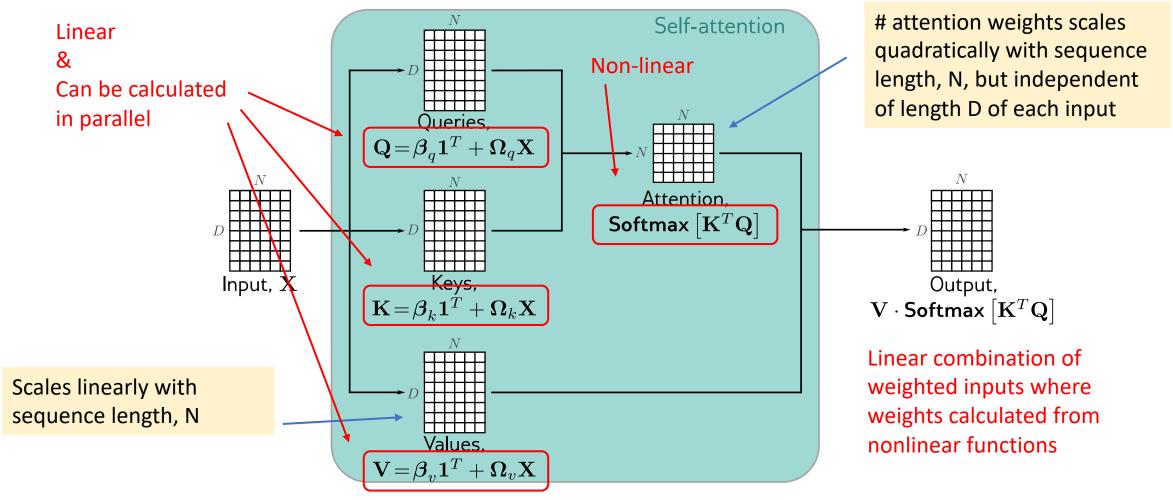
Put it all together in matrix form



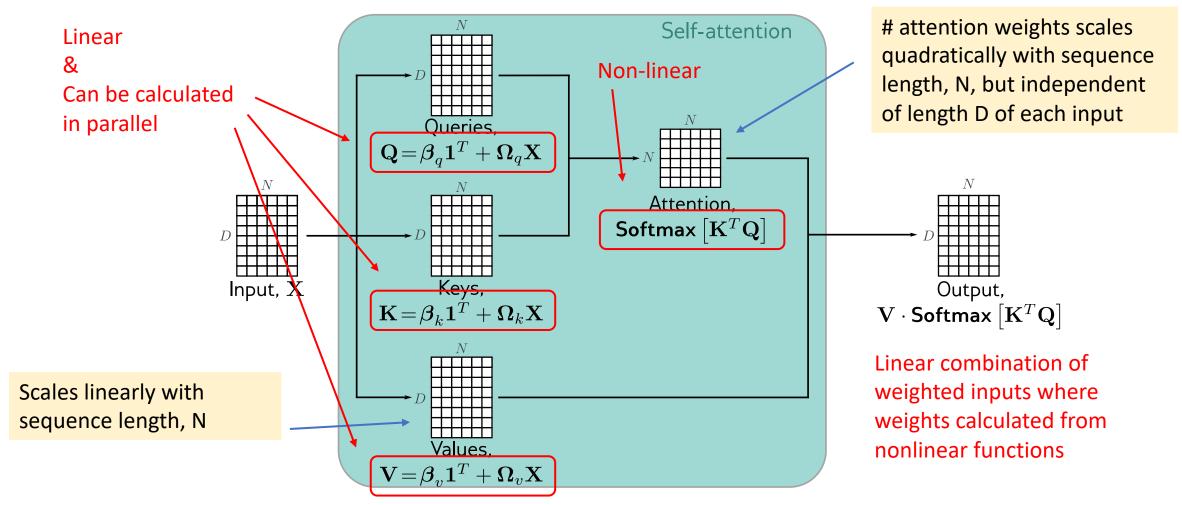
Put it all together in matrix form



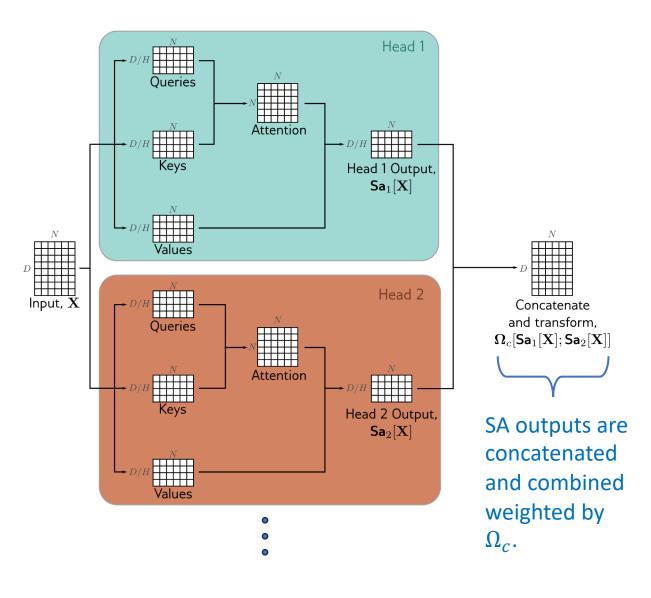
Put it all together in matrix form



Hypernetwork – 1 branch calculates weights of other branch



Multi-Head Self Attention



- Multiple self-attention heads are usually applied in parallel
- "allows model to jointly attend to info from different representation subspaces at different positions"
- Original paper used 8 heads
- All can be executed in parallel

A function f[x] is equivariant to a transformation t[] if: f[t[x]] = t[f[x]]

Equivariance to Word Order

Self-attention is equivariant to permuting word order. Just a bag of words.

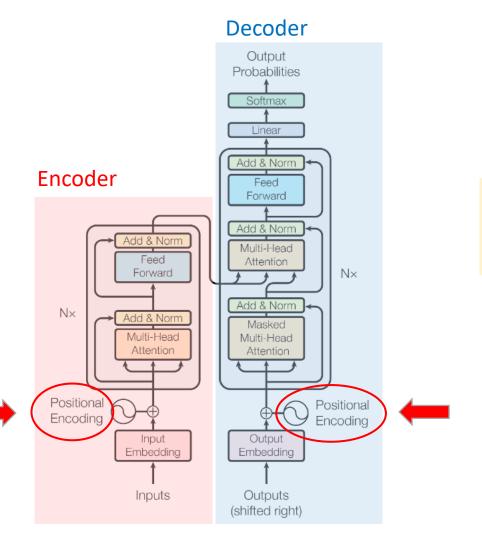
But word order is important in language:

The man ate the fish

VS.

The fish ate the man

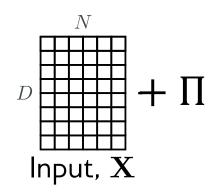
Solution: Position Encoding



Idea is to somehow encode *absolute* or *relative* position in the inputs

Absolute Position encoding

Add some matrix, Π , to the $D \times N$ input matrix:



128 80 Input, n

 Π can be pre-defined or learned

Absolute Position encoding

Alternatively, could be added to each layer

$$\mathbf{Sa}[\mathbf{X}] = \mathbf{V} \cdot \mathbf{Softmax}[\mathbf{K}^T \mathbf{Q}]$$

$$\mathbf{Sa[X]} = (\mathbf{V} + \mathbf{\Pi}) \cdot \mathbf{Softmax}[(\mathbf{K} + \mathbf{\Pi})^T (\mathbf{Q} + \mathbf{\Pi})]$$

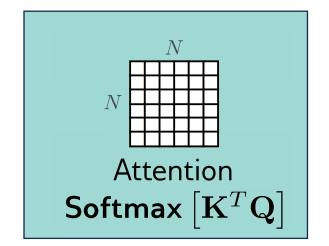
Relative Position Encoding

Absolute position of a word is less important than relative position

between inputs

	- _				
The	panda	eats	shoots	ānd	leaves

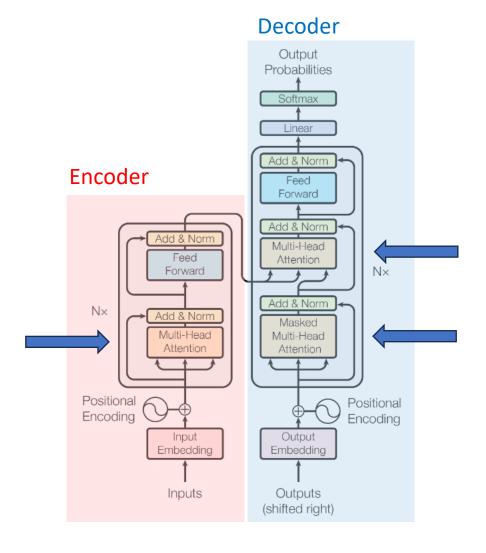
Abs	Pos:	0	1	2	3	4	5
Rel	Pos:	- 2	- 1	0	1	2	3



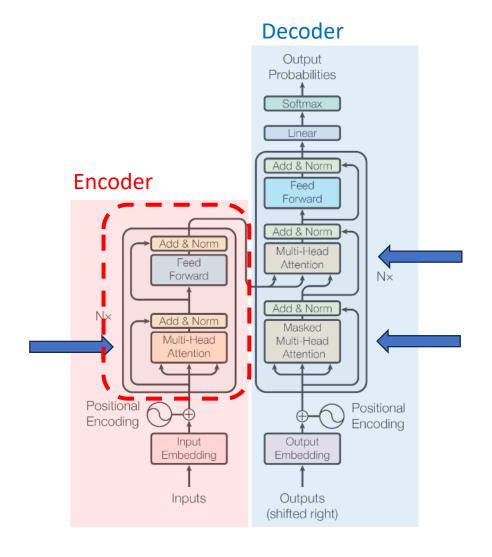
Each element of the attention matrix corresponds to an offset between query position a and key position b

Learn a parameter $\pi_{a,b}$ for each offset and modify Attention[a,b] in some way.

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models



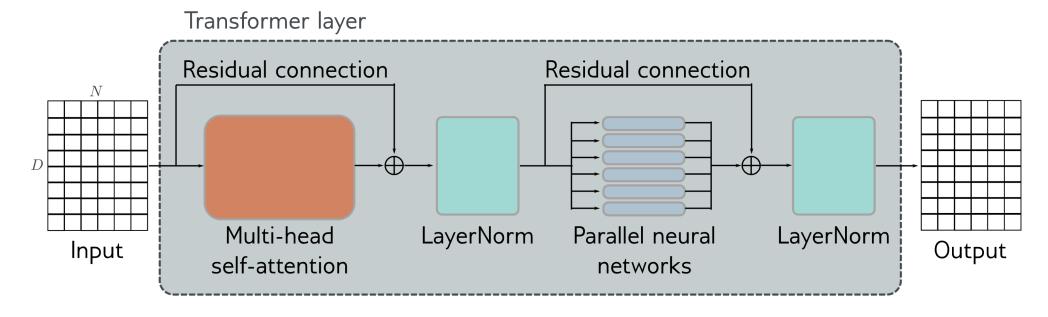
 Multi-headed Self Attention is just one component of the transformer architecture



 Multi-headed Self Attention is just one component of the transformer architecture

 Let's look at a transformer block (or layer) from the encoder

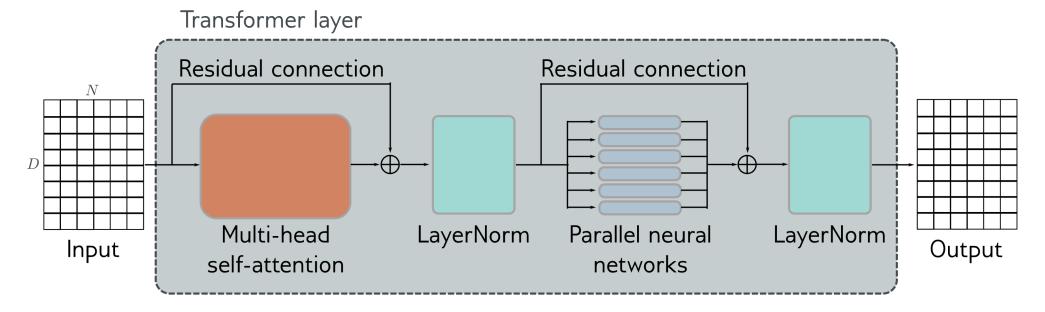
Transformer Layer -- Complete



- Adds a 2-layer MLP
- Adds residual connections around multi-head selfattentions and the parallels MLPs
- Adds LayerNorm, which normalizes across all the N input samples

$egin{array}{lll} & {\sf Transform\ Layer} \ & {\sf X} & \leftarrow & {\sf X} + {\sf MhSa[X]} \ & {\sf X} & \leftarrow & {\sf LayerNorm[X]} \ & {\sf x}_n & \leftarrow & {\sf x}_n + {\sf mlp[x}_n] \ & {\sf X} & \leftarrow & {\sf LayerNorm[X]}, \end{array}$

Transformer Layer -- MLP

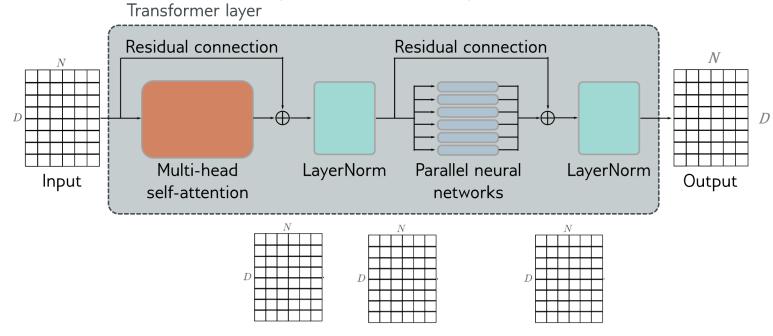


Ads 2-layer MLP

- Same network (same weights) operates independently on each word
- Learn more complex representations and expand model capacity

 $Linear_{Dx4D} \rightarrow ReLU(.) \rightarrow Linear_{4DxD}$

Transformer Layer -- LayerNorm



- Normalize across same layer
- Learned gain and offset

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$
Calculated column-wise

NLP Example

batch, sentence_length, embedding_dim = 20, 5, 10
embedding = torch.randn(batch, sentence_length, embedding_dim)
layer_norm = nn.LayerNorm(embedding_dim)

Activate module

layer norm(embedding)

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

3 Types of Transformer Models

- 1. Encoder transforms text embeddings into representations that support variety of tasks (e.g. sentiment analysis, classification)
 - ❖ Model Example: BERT
- Decoder predicts the next token to continue the input text (e.g. ChatGPT, AI assistants)
 - ❖ Model Example: GPT4, GPT4
- 3. Encoder-Decoder used in sequence-to-sequence tasks, where one text string is converted to another (e.g. machine translation)

Encoder Model Example: BERT (2019)

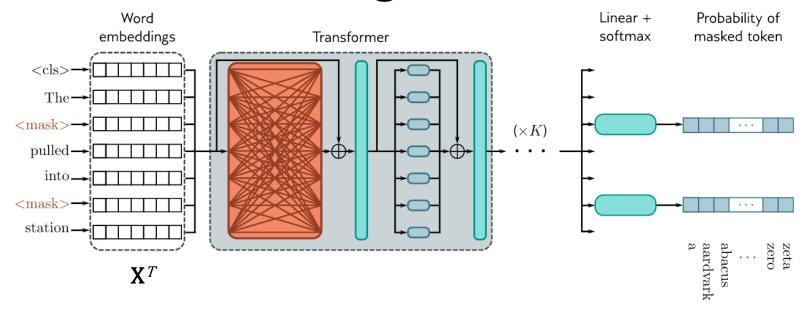
<u>B</u>idirectional <u>E</u>ncoder <u>R</u>epresentations from <u>T</u>ransformers

- Hyperparameters
 - 30,000 token vocabulary
 - 1024-dimensional word embeddings
 - 24x transformer layers
 - 16 heads in self-attention mechanism
 - 4096 hidden units in middle of MLP
- ~340 million parameters
- Pre-trained in a self-supervised manner,
- then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

Encoder Pre-Training

Special <cls> token used for aggregate sequence representation for classification

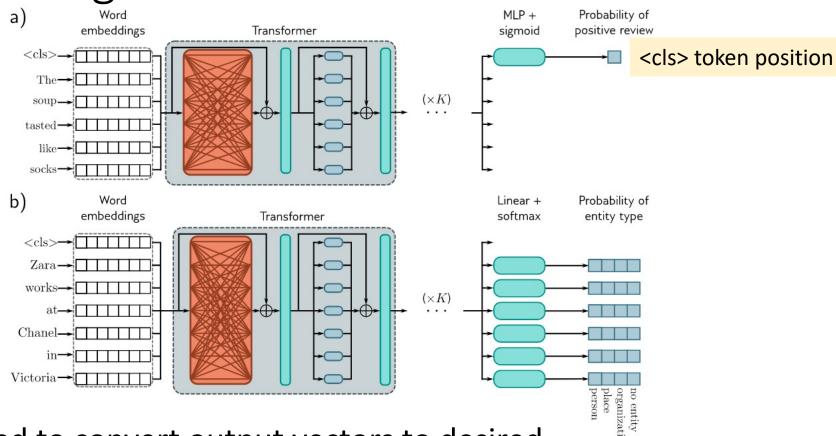


- A small percentage of input embedding replaced with a generic <mask> token
- Predict missing token from output embeddings
- Added linear layer and softmax to generate probabilities over vocabulary
- Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)

Encoder Fine-Tuning

Sentiment Analysis

Named Entity Recognition (NER)



- Extra layer(s) appended to convert output vectors to desired output format
- 3rd Example: Text span prediction -- predict start and end location of answer to a question in passage of Wikipedia, see https://rajpurkar.github.io/SQuAD-explorer/

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

Decoder Model Example: GPT3 (2020) *Generative Pre-trained Transformer*

- One purpose: *generate the next token in a sequence*
- By constructing an autoregressive model

Decoder Model Example: GPT3 (2020) <u>Generative Pre-trained Transformer</u>

- One purpose: generate the next token in a sequence
- By constructing an autoregressive model
- Factors the probability of the sentence:

```
Pr(Learning deep learning is fun) =
Pr(Learning) × Pr(deep | learning) ×
Pr(learning | Learning deep) ×
Pr(is | Learning deep learning) ×
Pr(fun|Learning deep learning is)
```

Decoder Model Example: GPT3 (2020) <u>Generative Pre-trained Transformer</u>

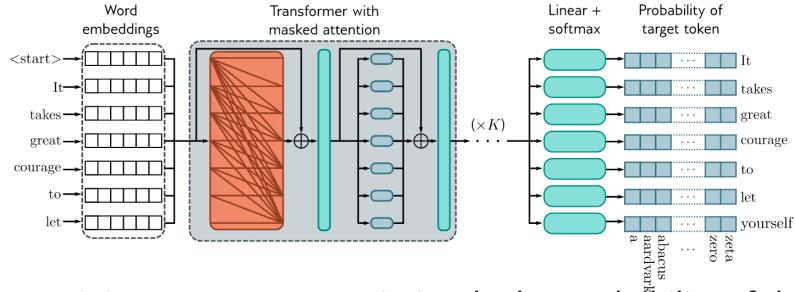
- One purpose: generate the next token in a sequence
- By constructing an autoregressive model
- Factors the probability of the sentence:

```
Pr(Learning deep learning is fun) =
Pr(Learning) × Pr(deep | learning) ×
Pr(learning | Learning deep) ×
Pr(is | Learning deep learning) ×
Pr(fun | Learning deep learning is)
```

More formally: Autoregressive model_N

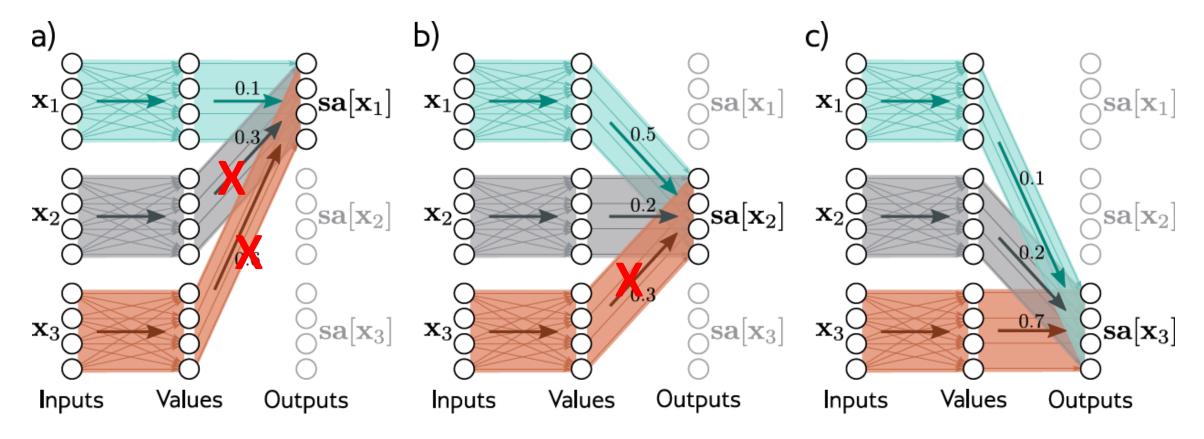
$$Pr(t_1, t_2, ..., t_N) = Pr(t_1) \prod_{n=2} Pr(t_n | t_1, t_2, ..., t_{n-1})$$

Decoder: Masked Self-Attention



- During training we want to maximize the log probability of the input text under the autoregressive model
- We want to make sure the model doesn't "cheat" during training by looking ahead at the next token
- Hence we mask the self attention weights corresponding to current and right context to negative infinity

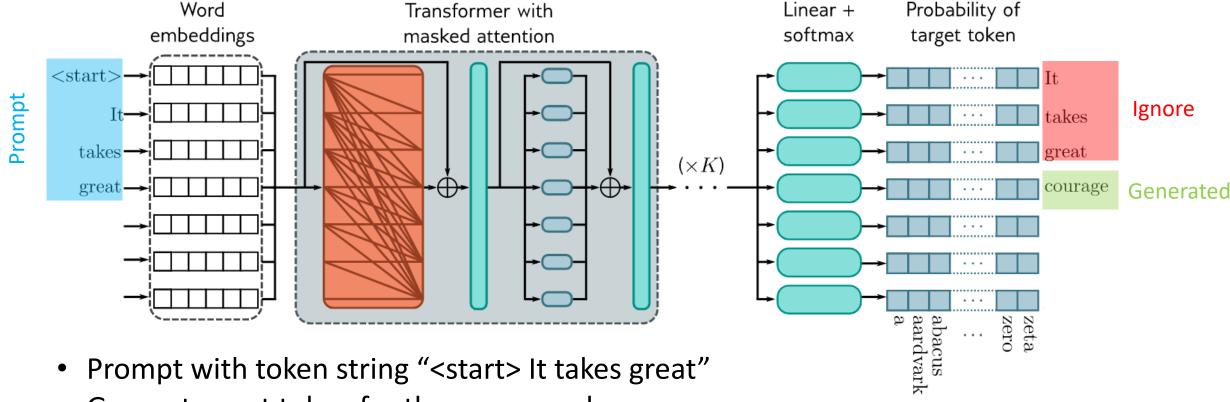
Masked Self-Attention



Mask right context self-attention weights to zero

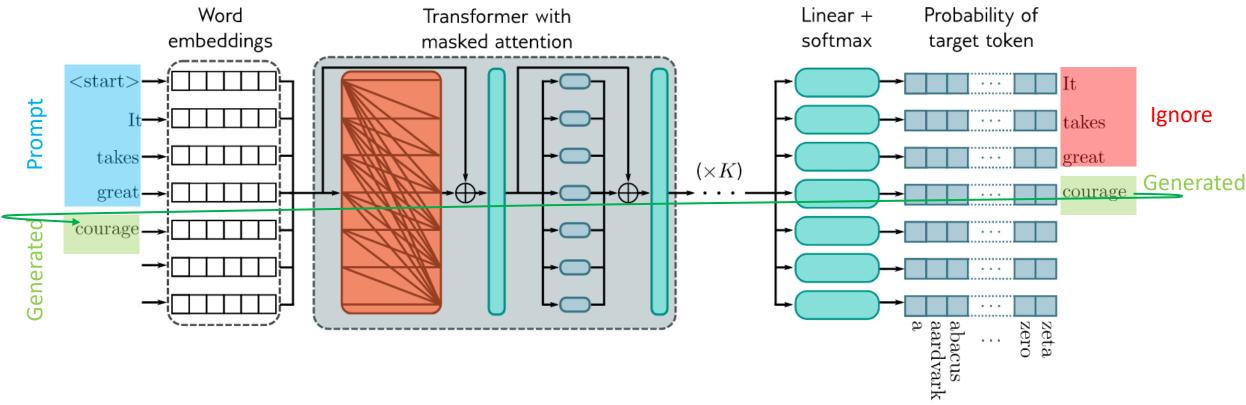
Masked Self-Attention a) Ь) Attention weights Attentions products \mathbf{x}_{1} \mathbf{x}_2 x_3 $\mathbf{q}_3^T \mathbf{k}_1$ Inputs $\mathsf{a}[\mathbf{x}_3',\mathbf{x}_1]$ $\mathsf{a}[\mathbf{x}_3,\mathbf{x}_1$

Decoder: Text Generation (Generative AI)



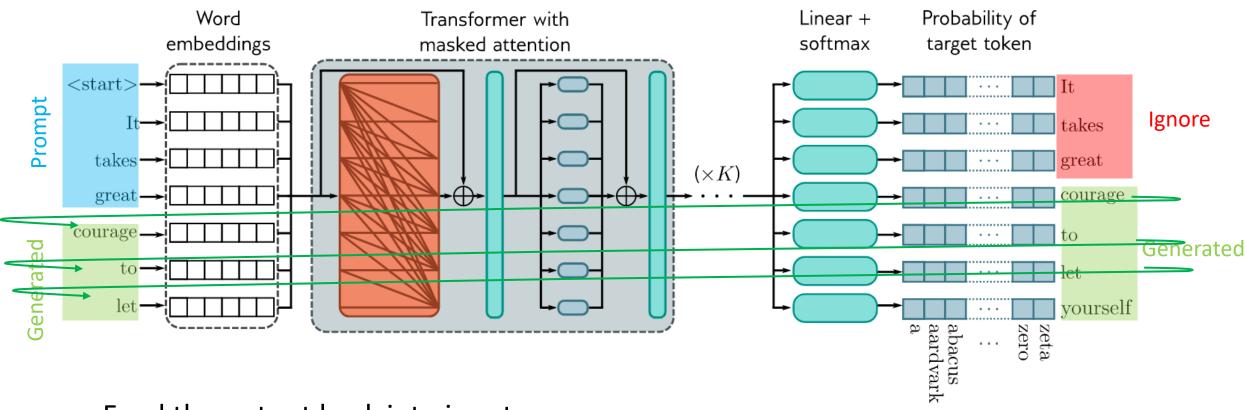
- Generate next token for the sequence by
 - picking most likely token
 - sample from the probability distribution
 - alternative top-k sampling to avoid picking from the long tail
 - beam search select the most likely sentence rather than greedily pick

Decoder: Text Generation (Generative AI)



Feed the output back into input

Decoder: Text Generation (Generative AI)



Feed the output back into input

Technical Details

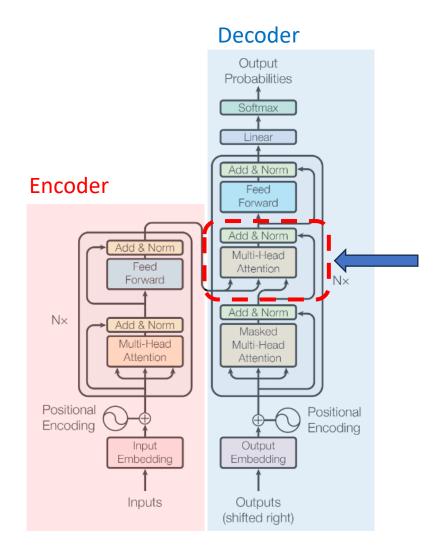
	BERT	GPT3	
Model Architecture	Encoder	Decoder	
Embedding Size	1024	12,288	
Vocabulary	30K tokens		
Sequence Length		2048	
# Heads	16	96	
# Layers	24	96	
Q,K,V dimensions	64	128	
Training set size	3.3B tokens	300B+ tokens	
# Parameters	340M	175B	

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

Encoder-Decoder Model

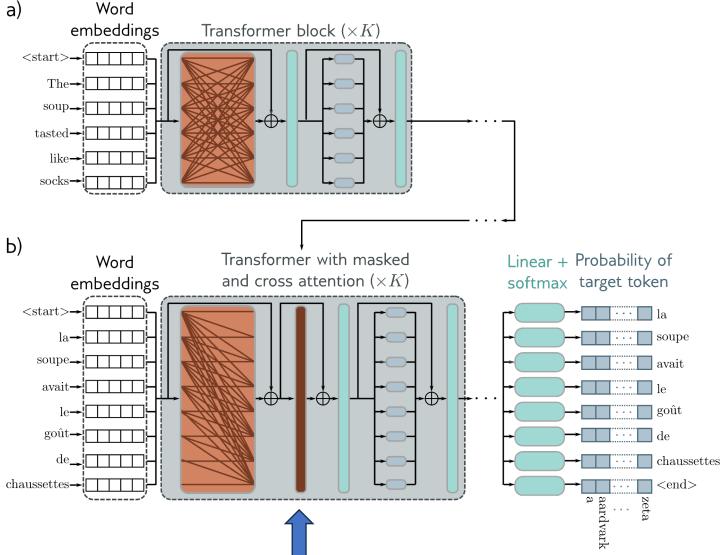
• Used for machine translation, which is a sequence-to-sequence task

Encoder Decoder Model



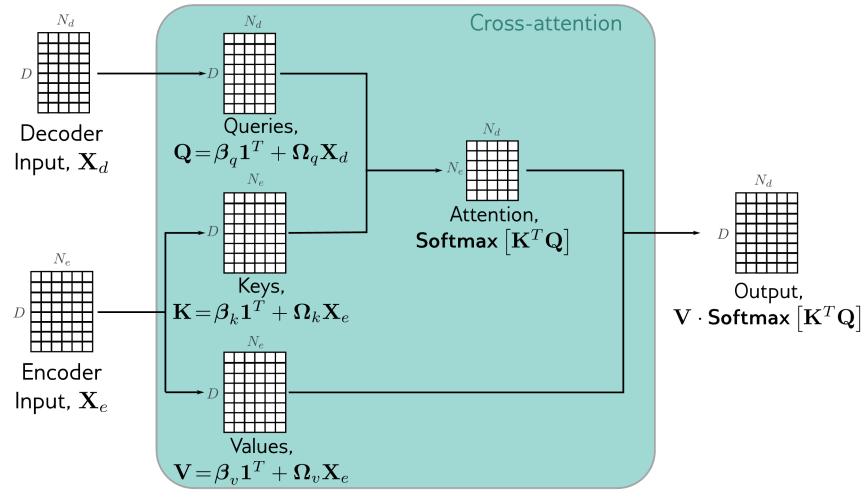
- The transformer layer in the decoder of the encoder-decoder model has an extra stage
- Attends to the input of the encoder with cross attention using Keys and Values from the output of the encoder
- Shown here on original diagram from "Attention is all you need" paper

Encoder Decoder Model



Same view per UDL book

Cross-Attention



Keys and Values come from the last stage of the encoder

Next Time

- Tokenization and Learned Embeddings
- Training and Fine-Tuning Transformers
- Image Transformers
- Multimodal Transformers

• ...

Feedback

Link