BOSTON
UNIVERSITY

Transformers

DLADS — Spring 2024

https://udlbook.github.io/udlbook/

A Brief History of Transformers

Yoshua
Bengio*

A Neural Probabilistic
Language Model

i-th output = P(w, = i| context)

softmax

2014

2014

llya
Sutskever*

Seq-to-Seq Learning with

Neural Networks \

eee)

most | computation here

Dzmitry
Bahdanau*

2017

Neural Machine Translation
by Jointly Learning to Align
and Translate

A Team
at Google

Attention is all you need

Output
Probabilities

’
& g Encoder Decoder
w X i z <EOS>
Positional & Positional
P M C s m R R~ <R Encoding § Encoding
shared parameters |—>I l—>| I—)I |—)| 1 2 3 T Input Output
across words | I Embedding [Embedding
index for w,_, index for w2 index for w,_, T T T X1 X2 X3 XT I t
A B G <EOS> w X Y z Inputs Outputs
(shifted right)

*And others; Chronological analysis inspired by Andrej Karpathy's lecture, youtube.com/watch?v=XfoMkf4rD6E

© SuperDataScience | Join our Al Learning Community at www.superdatascience.com

et S i

A Neural Probabilistic Language Model

Bengio et al, 2000 and 2003

i-th output = P(w, = i | context)

softmax

Optional direct . /
connections 2> ¢

Table
look—up

inC

index for w,

Figure 1: Neural architecture: f(i,w;_1, -+ . Wi_ns1)

most| computation here

tanh

...

~. Matrix C
shared parameters
across words

index for wy_» index for w,_

neural network and C(i) is the i-th word feature vector.

w; € I/ words in the vocabulary

C is a |[V|xXm matrix

2(i,C(wy_1).---.C(wy_,+1)) where g is the

Build a probabilistic language
model from NNs

Feed forward network with
shared parameters, C, that create
embeddings

Predicts the probability of a word
at time ¢, based on the context of
the last n words

Can use shallow feed forward or
recurrent neural networks

Limited to context length of n

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language Model,” Journal of Machine Learning Research, vol. 3, pp. 1137-- 1155, Feb. 2003. 3

Sequence to Sequence Learning with Neural Networks

Sutskever et al (2014)

Encoder

Decoder

|
l_,|

A <EOS>

Bottleneck

II—»IH%E% Tl—»l
TT T IO

|

|
|

Used LSTMs in an Encoder/Decoder
structure

Estimate the probability of
PV, e V7 1%, oo, Xx7) where T" # T

Encoder mapped sequence to a fixed
size token (hidden state)

The hidden state may not encode all
the information needed by the
decoder

Bottleneck between Encoder
and Decoder!

l. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Advances in Neural Information Processing

Systems, Curran Associates, Inc., 2014. Link

https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Neural Machine Translation by Jointly Learning to Align and Translate
Bahdanau, Cho & Bengio (2014-15)

e Used bi-directional LSTMs

"ehtio,, * Automatically “soft-search” parts of
input that influence the output

e Overcomes the bottleneck of a fixed
size hidden state between encoder
and decoder

rhlabgl- 45 * Significantly improved ability to

comprehend longer sequences

Attention is All You Need
Vaswani et al (2017)

Decoder

Output
Probabilities

4

e Removed LSTMs and didn’t use
convolutions

* Only attention mechanisms and

4)
Add & Norm Je=

MLPs

Encoder Feed
Forward o o
P R S * Parallelizable by removing
Add & Norm o ti-.I o . .
== ||| (e sequential hidden state
Forward ; Y Nx .
Add & Norm _je= Computatlon
Nx | (A3 & Norm) S
Multi-Head Multi-Head 1
o | ||| S e Qutperformed all previous
—_— models
Positional) ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
I I
Inputs Outputs

(shifted right)

Transformers applied to many NLP applications

* Translation

* Question answering

* Summarizing

* Generating new text

* Correcting spelling and grammar
* Finding entities

* Classifying bodies of text

* Changing style etc.

Transformers

* Motivation

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

* Three Types of NLP Transformer Models

Transformers

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

* Three Types of NLP Transformer Models

Motivation

Design neural network to encode and process text:

Motivation

Design neural network to encode and process text:

Encode word (or word parts) in some kind of D-dimensional embedding vector.
We'll look at tokenization and embedding encoding later.

For now assume a word is a token. .

Motivation

Design neural network to encode and process text:

The restaurant refused to serve me a ham sandwich, because it only cooks vege-
tarian food. In the end, they just gave me two slices of bread. Their ambience was
just as good as the food and service.

D
- HINE B D BNl " HE B EEEm - -

XN
In this example, we have a D-dimensional input vector for each of the 37 words

above.

Normally we would represent punctuation, capitalization, spaces, etc. as well.

12

Standard fully-connected layer

B+ Qx|

|

h =

13

Standard fully-connected layer
h =a|8 + x|

Problem:

token (word) vectors may be 512 or 1024 dimensional
need to process large segment of text

Hence, would require a very large number of parameters
Can’t cope with text of different lengths

Conclusion:
* We need a model where parameters don’t increase with input length

Motivation

Design neural network to encode and process text:

oD

The word must “attend to” the word

Motivation

Design neural network to encode and process text:

oD

The word must “attend to” the word

Conclusions:

 There must be connections between the words.
* The strength of these connections will depend on the words themselves,

Motivation

* Need to efficiently process large strings of text

* Need to relate words across fairly long context lengths

Self-Attention addresses these problems

Transformers

* Motivation

* Applying Self-Attention
* The Transformer Architecture
* Three Types of NLP Transformer Models

Dot-Product Selt-Attention

1. Shares parameters to cope with long input passages of different
lengths

2. Contains connections between word representations that depend
on the words themselves

Dot-product self attention

* Takes N inputs of size Dx1 and returns N inputs of size Dx1
e Computes N (no RelLU)

Vin = /Bv + van

Dot-product self attention

* Takes N inputs of size Dx1 and returns N inputs of size Dx1
e Computes N (no RelLU)

Vin = /Bv + van

* N outputs are weighted sums of these values
N
sa|x,| = alXp, Xm| Vi

m=1

Dot-product self attention

* Takes N inputs of size Dx1 and returns N inputs of size Dx1
e Computes N (no RelLU)

Vin = /Bv + ﬂvxn

* N outputs are weighted sums of these values ~ °Scalarselfattention weights that

/ represent how much attention the nt

N p A \ token should pay to the mt token
SAnp [Xla IR XN] — E a[xm: Xn]v"rn-
m=1

al-, X,,] are non-negative and sum to

* Weights depend on the inputs themselves one

22

Attention as routing

23

Attention as routing

Inputs Values Outputs

H_J

Linear Transform

Here:
of inputs, N=3
Dimension of each input, D=4

We’ll show how to calculate the
self-attention weights shortly.

24

Attention as routing

25

% 9

4o} (e}

wn wn
OOO00O OO0

Attention as routing

26

Attention weights

* Compute N “and N “ ”from input
an = /Bq =+ Qan
k’n — /Bk + Qan,
 Calculate similarity and pass through softmax:
a|Xy, Xm| = softmax,, [sim|k,,q,]]

_ exp |sim|k;,q,]]
> —1 €xp [sim[k/, g

)

Attention weights

e Compute N “

e Take

“and N “ ”from input
dn. = B, + Q¢xp
ky, = By + Qixp,
and pass through softmax:
a|Xy, Xm| = softmax,, [kflqn}

exp |kl qn|

N exp [KT,qy)

Dot product = measure of similarity

x'y = [x||lylcos(6)

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(6) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors

A drawback of the dot product as similarity measure is the magnitude of each
vector influences the value. More rigorous to divide by magnitudes.

. T xTy
Cosine Similarity: —= = cos(60)
x|y
29

Motivation

Design neural network to encode and process text:

Conclusions:

v" We need a model where parameters don’t increase with input length, e.g.
¢ — {/Bfu? Q’U? /3q7 ﬂq> /B,Im ﬂk}

v There must be connections between the words.
v The strength of these connections will depend on the words themselves.

Ok, we defined queries, keys and values, but how
are they used?

Transformers

* Motivation
* Dot-product self-attention

* The Transformer Architecture
* Three Types of NLP Transformer Models

Computing Attention Weights

a)

X1 .2
O&g@’é\e An = By + L2gxn
AN
X3 %
@y b)) Attention weights
U
é’\(ﬁ/ prol?:l?Jtcts Attentions ..
2 | . o = _ T
o SEELCY S sen SenE a|Xy, Xm| = softmax,, [kmqn}
X - /III P L] I. l. l-
Inputs Q. CERS ‘ a[xs, x1] Il =
// \ - . m
a[xs, x1] L M

33

Computing Values and Self-Attention Outputs as Sparse Matrix Ops

a))
_ {2, . %[X”)\Xml Values
O O O . 1 2 3
— ()
N\
SR " O
5 AN S m m =
Q OO S: Mg Mg ©
X27’ <‘\‘,\X\v O Cj)
S RO m O o
O XN B] B
O " ‘?Q"}}t 3]]]
o=l WYa\\g NN .
X3 =
:/‘\ \\O a[x3, X1 |
/
Inputs Values Qutputs Value weights Attention weights

34
This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

From Input Vector to Input Matrix

* Store N input vectors in matrix X N

D

Input, X
 Compute values, queries and keys:
VX =8,1T +Q,X

Combine self-attentions

Sa[X] = V[X] - Softmax |K[X|"Q[X]| = V - Softmax[K’ Q)

Scaled Dot Product Self-Attention

* To avoid the case where a large value dominates the softmax in
Sa[X] = V - Softmax /K’ Q]

* you can scale the dot product by the square root of the dimension of
the quer - -
query KTQ

VD,

Sa|X| =V - Softmax

Put it all together in matrix form

il Self-attention
D
Queries, il
Q=8,1" + QX N
N N N
Attention,
D D SOftmaX [KTQ] D
Input, X Keys, Output,
K=03,11+Q;X V - Softmax |
N
D
Values,

v=317 + Q,X

Put it all together in matrix form

Self-attention # attention weights scales
guadratically with sequence

P length, N, but independent
Queries N of length D of each input
Q:/BqlT + QqX N
N N N
Attention,
D D Softmax [K” Q] 5
Input, X Keys, Output,
K=03,11+Q;X V - Softmax [K” Q]
N
Scales linearly with D
sequence length, N —
Values,

v=38,17 + Q,X

Put it all together in matrix form

Linear T
& D
Can be calculated
in parallel \ Queries
(Q=8,17 +2,X |
N
D

Self-attention

Non-linear
\ .
N

Scales linearly with
sequence length, N

!
Attention
[Softmax [K” Q]]

attention weights scales
guadratically with sequence
length, N, but independent
of length D of each input

Values

[V:ﬂvlTJrQUX]

Output,
V - Softmax _KTQ]

Linear combination of
weighted inputs where
weights calculated from
nonlinear functions

39

Hypernetwork — 1 branch calculates weights
of other branch

Linear
&

Can be calculated
in parallel

Scales linearly with
sequence length, N

[V:,BvlTJrQUX]

N Self-attention # attention weights scales
, guadratically with sequence
P Mo lieer / length, N, but independent
\ Quierias \ N of length D of each input
[Q:ﬁq1T+QqX]) N
N N
Attention
D [Softmax [K” Q]] 5
Keys; Output,
[K:,Ble + Q. X] V - Softmax _KTQ]
N
Linear combination of
5 weighted inputs where
— weights calculated from
Values nonlinear functions

40

Multi-Head Self Attention

@ N Head 1)

Queries—‘ il
J N

* Multiple self-attention heads are
— usually applied in parallel

oa Attention T
- e * “allows model to jointly attend to
' e info from different
| S - - representation subspaces at

D —] D

different positions”

Input, X Concatenate
and transform,

asaxsex) @ Original paper used 8 heads

\ Y . All can be executed in parallel
SA outputs are
concatenated
and combined
. weighted by
° Q..

41

A function f[x] is to a
transformation t[] if: f[t[x]] =t [fx]]

Equivariance to Word Order {

Self-attention is equivariant to permuting word order. Just a bag of words.

But word order is important in language:

VS.

—)

Solution: Position Encoding

Encoder

Vs

Decoder

Output
Probabilities

4

4)
Add & Norm o=

Feed
Forward

| Add & Norm |<\

1 ~\
f->| Add & Norm |
Feed
Forward

Multi-Head
Attention
)
|
Nix Add & Norm _je=
/—>| Add & Norm | WEERe
Multi-Head Multi-Head
Attention Attention
At At
— J ~—
Positional o)
Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

I
¢ Positional
Encoding

—

Idea is to somehow encode absolute or
relative position in the inputs

43

Absolute Position encoding
0

Add some matrix, I, to the

D XN input matrix: s
N c
O

n 64

D I H==q:)6

&
Input, X D_

I can be pre-defined or learned 198

00

0 Input, n 0

44

Absolute Position encoding

Alternatively, could be added to each layer

Sa[X] = V - Softmax[K"’ Q]

4

Sa[X] = (V + II) - Softmax[(K + IT)T (Q + IT)]

Relative Position Encoding

Absolute position of a word is less important than relative position

between inputs /\

The panda eats shoots and leaves

Abs Pos: 0 1 2 3 4 5
Rel Pos: -2 -1 0 1 2 3
il Each element of the attention matrix corresponds to
N an offset between query position a and key position b

Attention Learn a parameter 1, ;, for each offset and modify
Softmax |[K' Q] Attention[a,b] in some way.

Transformers

* Motivation
* Dot-product self-attention
* Applying Self-Attention

* Three Types of NLP Transformer Models

Transformers

Decoder

Output
Probabilities

liﬂﬁﬁil

4

(")
[Add & Norm J«=
Encoder Feed
Forward
7 I A | Add & Norm ﬁ
> EEEOTY Multi-Head _
Feed Attention
Forward 7 7 Nx
—
Nixc Add & Norm
f—>| Add & Norm | VaErea
_ Multi-Head Multi-Head _
Attention Attention
t 2
o J L e’}
Positional Positional
e & S |
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

* Multi-headed Self Attention is just one
component of the transformer
architecture

48

Transformers

Decoder

Output
Probabilities

4

(e
Encoder Feed

Forward

’___\

| | —(AdoeNom) Mot rioad
: |
I

Feed Attention

Forward ;) Nx

|
I Add & Norm _je=

f—>| Add & Norm | WEERe
Multi-Head I Multi-Head
Attention Attention

Y | f ——
V), —
Positional D Positional
Encoding ¢ Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

* Multi-headed Self Attention is just one
component of the transformer
architecture

 Let’s look at a transformer block (or
layer) from the encoder

49

Transformer Layer -- Complete

Transformer layer

Y
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
)

i Residual connection Residual connection i
N | i
D § —O— C B S ;
| Multi-head LayerNorm Parallel neural LayerNorm |
Input !) . Output
i self-attention networks :

Transform Layer

Adds a 2-layer MLP

Adds residual connections around multi-head self- X < X+ MhSa[X]
attentions and the parallels MLPs X <« LayerNorm[X]
Adds LayerNorm, which normalizes across all the N Xp ¢ Xp + mlp[x,]
input samples X <+ LayerNorm[X],

Transformer Layer -- MLP

Transformer layer

Y
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
)

4

. E' Residual connection: Residual connection E
e Ads 2_|ayer MLP e Same network (same weights) operates

independently on each word
* Learn more complex representations and expand
model capacity

Linearpyp =2 ReLU(.) =2 Linear,pyp

Transformer Layer

Transformer layer

1
1
1
1
1
1
1
1
1
1
1
1
:
b . D
1
1
1
1
1
1
1
1
1
1
1
1
1

Residual connection

Multi-head

Input .
P self-attention

LayerNorm

Residual connection

LayerNorm

L =

Parallel neural
networks

LayerNorm Output

D

* Normalize across same layer
* Learned gain and offset

f/ r — Elz \‘:
! v/ Var[z] + € :
' Calculated column-wise

D

D

NLP Example

batch, sentence length, embedding dim = 20, 5, 10
embedding = torch.randn(batch, sentence_length,
layer _norm = nn.LayerNorm(embedding dim)

Activate module
layer _norm(embedding)

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

52

embedding _dim)

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

Transformers

* Motivation

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

Transformers

* Motivation

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

 Encoder
e Decoder
* Encoder-Decoder

Transformers

* Motivation

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

e Decoder
 Encoder-Decoder

3 Types of Transformer Models

— transforms text embeddings into representations that
support variety of tasks (e.g. sentiment analysis, classification)

¢ Model Example: BERT

— predicts the next token to continue the input text (e.g.
ChatGPT, Al assistants)

“* Model Example: GPT4, GPT4

— used in sequence-to-sequence tasks, where one
text string is converted to another (e.g. machine translation)

Encoder Model Example: BERT (2019)

Bidirectional Encoder Representations from Transformers

* Hyperparameters
* 30,000 token vocabulary
* 1024-dimensional word embeddings
e 24x transformer layers
* 16 heads in self-attention mechanism
* 4096 hidden units in middle of MLP

* ~340 million parameters
* Pre-trained in a self-supervised manner,
* then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.”
arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

57

https://doi.org/10.48550/arXiv.1810.04805

Encoder Pre-Training

Special <cls> token
used for aggregate
sequence
representation for
classification

Word
embeddings

< 1
! i

pulled T TTT T T -
into—[TTTTTTIH !
:]
<mask>—TTTTTTIH !
i : -

. ! 1
station—TTTTTTIH |
i H 3

\ 7 <

Transformer

Linear + Probability of
softmax masked token

snoeqe
0.I19%
©)OZ

yIeapree

* A small percentage of input embedding replaced with a generic

token

* Predict missing token from output embeddings

* Added linear layer and softmax to generate probabilities over vocabulary
* Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)

58

Encoder Fine-Tuning

) Word MLP + Probability of
embeddings Transformer sigmoid positive review
<Cl“>—“|:|_|_|_L]_|_| i W‘ | e ﬁi ~(__ ——11 <cls>token pOSition
o [11('—>‘;Djj:|:]jj; E 4‘\:\;’;{7; =~ i e
Se ntl me nt 5(,"[,_,;':[:1:1:[3:1:15 g ‘%}‘}:‘:’é‘ wapd (xK) .
i | DRIIIRRKL B>~ -
. tasted—[(TTTTTTIH! (RPN et -
Analysis Pl m——i) = "
it &N
ock _N:I -- I ___ | __ | ___ I __ | ____ : - G Ji —
b) Word Linear + Probability of
embeddings Transformer softmax entity type
<(ls>—>:'|_| _ __ [TI1L] :'- f -)— @ —
Zara—[TTTTT T —a - —En
' orks—[TTTTTT]- ~-CD——
Named Entity works— : -)
... at—[TTTTTT] ot E- - - —mmm
Recogn Ition (NE R) Chanel—{[TTTTTTH ey o w—
in—~[TTTTTTH - - T[]
Victoria—= ,L U = U "C:D__’EEED

UOT)RZIeSI
Ayuo o

» Extra layer(s) appended to convert output vectors to desired
output format

 3rd Example: Text span prediction -- predict start and end
location of answer to a question in passage of Wikipedia, see
https://rajpurkar.github.io/SQuAD-explorer/

59

https://rajpurkar.github.io/SQuAD-explorer/

Transformers

* Motivation

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

 Encoder

 Encoder-Decoder

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

* One purpose: generate the next token in a sequence

* By constructing an autoregressive model

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

61

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

* One purpose: generate the next token in a sequence
* By constructing an autoregressive model

* Factors the probability of the sentence:
Pr(Learning deep learning is fun) =
Pr(Learning) X Pr(deep | learning) X
Pr(learning | Learning deep) X
Pr(is | Learning deep learning) X
Pr(fun|Learning deep learning is)

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

62

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

* One purpose: generate the next token in a sequence
* By constructing an autoregressive model

* Factors the probability of the sentence:
Pr(Learning deep learning is fun) =
Pr(Learning) X Pr(deep | learning) X
Pr(learning | Learning deep) X
Pr(is | Learning deep learning) X
Pr(fun|Learning deep learning is)

* More formally: Autoregressive model

Pr(ty, t,, ..., ty) = Pr(t;) 1_[Pr(t,|t1,ty, ..., th_1)
n=2

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

63

https://doi.org/10.48550/arXiv.2005.14165

Decoder: Masked Self-Attention

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
-- \

1 \)) - Y, T BRiieSyrrrrrremee
<start>—[TTTT Tl | ~(_ i G e 0 1 I N B
1 I 1 I TN g
—TTTTTIH ! ~ @B ; ~(I T takes
] 1 1 1
takes—i[T T TTT1H | O ' ~(reat
s 18 L) R
o ORISR K L R s — T _
great—(T T T T T I - @S- - - — (D - courage
1 1
courage—[TTTTTI | -~ i - to
1 1
]] | S e
oI TTTTIH | - || -~ i et
1
1 ! I L e .
let—{TTTTTIH U Led U ~(C D] yourself
N — ey o E_:; oV} N N
=2
& m

I

* During training we want to maximize the log probability of the input text
under the autoregressive model

 We want to make sure the model doesn’t “cheat” during training by
looking ahead at the next token

* Hence we mask the self attention weights corresponding to current and
right context to negative infinity

64

Masked Self-Attention

= o~
N »

© ©

wn wn
O000O OOOO (

Mask right context self-attention weights to zero

65

Masked Self-Attention
a)

X1

X9o—

X3
Inputs

66

Prompt

Decoder: Text Generation (Generative Al)

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
<start>—{TTTT Tl | 5 |) o G o o e |
—{TTTTT1H - § ~C__) I akes 8NOTE
takes —{ T TTTT1H ! Nans § ey [T T et
great—[T [T D P - ([0 [I courage
T | - i ~C)~
—TITT1I - : ~C_)~ o
—{TTITTH J Ld! U -
------------ L R NN
22 S &
* Prompt with token string “<start> It takes great” e
-~

* Generate next token for the sequence by
e picking most likely token
* sample from the probability distribution
 alternative top-k sampling to avoid picking from the long tail
* beam search —select the most likely sentence rather than greedily pick >/

Decoder: Text Generation (Generative Al)

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
------------ \ ’__------__-_-___--_-___--__-_--_-_---_~\ cssassacsans
<start>— [T T T I- : C) [T
= | | T =
2 l—T T T T ; C_ - [takes ~ Ignore
o ! ! N B
S takes—i[LT 111 - C eat
o : ! i (x K) [[0 [| |er
great—-i[[T [T T | — . . o — = I [I [T courage —r1w-
!] i < 7 E X | P L 1 |
_— H HE B NN) e A I e A A - R N
courage —i T T T T T J- E - Em
1 1 1
1 1 d | R 4 s scecsesssss
— [T+ : C
1
1 1 L - N
—{[TTITTI- | C_ -
"""""] >z . £2
Q_,% c o
S 7
=
=

* Feed the output back into input

68

Decoder: Text Generation (Generative Al)

Word Transformer with Linear + Probability of
embeddings masked attention softmax target token
-- \
1 v)} 00 A e e ccecsessans
_ <start>—~[TTTTTI- ; ~C D
o 1 I) TN e,
€ It—L I TTT T | ~([[Cltakes | 'gnore
O I 1 1
o ! B N I I T B O T e T e
& takes—iCL T 111+ : O = eat
: : : (XK) | I I | I Igr
great—-i[T [[T T | i e T] courage ——
! : i - 7 E ' L _PTTErr— | 1]
. T N Ilr r-"1r Ity | —_—= "
— cowrage—[T T T T 1 : ~ ama 0 1 N 0 0 £
1 1 H
— - o—IOTITT- e T T T he—————
- i | N e
et TTTT]- = -~ I yourself
DO ’ J R N N
£S g2
Q_.% C o
S 7
=
=

* Feed the output back into input

69

Technical Details

Model Architecture Encoder Decoder
Embedding Size 1024 12,288
Vocabulary 30K tokens

Sequence Length 2048

Heads 16 96

Layers 24 96

Q,K,V dimensions 64 128

Training set size 3.3B tokens 300B+ tokens

Parameters 340M 175B

70

Transformers

* Motivation

* Dot-product self-attention

* Applying Self-Attention

* The Transformer Architecture

 Encoder
e Decoder

Encoder-Decoder Model

e Used for machine translation, which is a sequence-to-sequence task

THE
R —p | | am a student

O/ TRANSFORMER

https://jalammar.github.io/illustrated-transformer/ 72

https://jalammar.github.io/illustrated-transformer/

Encoder Decoder Model

Encoder

Decoder

Output
Probabilities

Softmax
inear

rwa INX
 —
Nix Add & Norm _je=
—>_Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
t —t
— J ————
Positional @_@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

* The transformer layer in the decoder of
the encoder-decoder model has an
extra stage

* Attends to the input of the encoder
with cross attention using Keys and
Values from the output of the encoder

* Shown here on original diagram from
“Attention is all you need” paper

73

Encoder Decoder Model

a) Word
embeddlngs

pmmm——————

<start>— T TT T
The—{TTTT]

1
soup~{[TTTT]

tasted— T T 1]

like—{ T T T 1]

T

b)
Word

embeddlngs

<start>—{TTTTIh
1
1
la~{TTTT]
1
soupe—TTTT]
1

. i
avalt-jl:l:l:ljj

i i il il

Transformer block (x K)

Transformer with masked

and cross attention (x K)

Linear + Probability of
softmax target token

sTeApIRE

e Same view per UDL book

74

Cross-Attention

Ny Ny Cross-attention
D D
Decoder Queries, i
Input, X4 Q=p,1" +Q,X, N,
N, . Ny
Attention,
b Softmax [K” Q] P
KeTys, Output,
D K:,Bk]. + ﬂkXe V . SOftmaX I
N,
Encoder
Input, X, Y
Values,

vV=38,17"+Q,X,

I Keys and Values come from the last stage of
the encoder

Next Time

* Tokenization and Learned Embeddings
* Training and Fine-Tuning Transformers

* Image Transformers

* Multimodal Transformers

Feedback

O oy ot

Link

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

